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Definition: Quantum dynamical semigroup on B(b)

A pointwise ultraweakly continuous semigroup 7 = (7¢)¢>0 of
normal, completely positive, contractions on B(h);
it is called conservative if it is identity preserving.

Theorem (Lindblad, Gorini-Kossakowski-Sudarshan)

The norm-continuous QDS'’s are (et*);>o where
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for a Hilbert space k and operators K € B(h) and L € B(h; h ® k)
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@ b and k, two fixed Hilbert spaces
o (K,L) € X(h,k), thatis
K is the generator of a contractive Cy-semigroup on b;
L is an operator from § to h ® k, such that
Dom L D> Dom K; |Lv|®> +2Re(v,Kv) <0, v & DomK.
@ Associated quadratic forms: for x € B(b),
Lk 1 (x)[v] :== (v, x Kv)+(Kv,xv)+(Lv,x®I Lv), v € Dom K

Definition (Minimal QDS 7 for (K, L) € X(bh,k))
(i) For all x € B(h) and v € Dom K,
(v, Te(x)v) = (v, xv) + / ds Lk (Ts(x)v]. (1)

(i) For any other QDS 7" satisfying (1),
Ti(x) < T/(x), forallteR,xec B(h),.

- -
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Theorem (Davies, after Kato and Feller)

Let (K, L) € X(b,k).
Then there is a unique minimal QDS TH:L associated to (K, L).
If TX:L is conservative then Lk 1)(1) = 0, in other words

[Lv|]* + 2Re(v,Kv) =0, v & DomK.
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Setup 3/3

@ h and k, two fixed Hilbert spaces
o F = F(L2(IR{+; k))
o w(f) = exp(—||f]|>/2)e(f), f € L2(Ry;k)

on:=[", leBhamaK) () ()

Iy ok

F = Flo,] @ Flrt] @ Flt,oo[, Where F. i = F(L2([r, t[; k))
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@ t — V4, is strongly continuous
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EOZEOOES and ESOUSZE().
I
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where H is a selfadjoint operator on ,
B = (Bt)¢>0 is a Brownian motion, and
L?(W) = F (Wiener-Segal-It6 isomorphism).

Example 2: Weyl cocycles, W€ := (ly @ W(cjp 1))

c€k)
where W(f) is the (unitary) Fock-Weyl operator determined by

t>0 (

W(f)w(g) = e '™ & (f + g), g L3(Ry;k).

W(cpo,rse) = W, )W(cprr+ep) & W rse) = or(W(cpo,e))-
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Constructions: Associated cocycles and dual cocycles

Definition (Associated cocycles)

For V € QS.C(b,k),

ved = (Wo)* Vth)t>0, c,d ek

o (Vi) — Iy @ W(ep,) in B(h) ® Fio,r[ @ Fir,o0-

Definition (Dual cocycle)

For V € QS.C(h, k),

V= ((/h ® Re) Vi (ly ® Rf))tzo

where R; is the (unitary) time-reversal operator determined by
Rie(f) := e(rif), f e L2(Ry;k)
with (ref)(s) := f(t —s) for s € [0, t[ and := f(s) for s € [t, o0].
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=(Bo[VE)) gy CdEk.




Associated operators and domains



Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).

° KVd := the generator of the (c, d)-associated semigroup of V

C




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).

° Kcvd := the generator of the (c, d)-associated semigroup of V

o Ly(t) = t72(Ee)* Vel ® le(dfo,e1)))




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).

° Kcvd := the generator of the (c, d)-associated semigroup of V

o Ly(t) = t7H2(Ee)* Ve(ly ® [e(do,e))) € B h @ k)




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).

° Kcvd := the generator of the (c, d)-associated semigroup of V

o LY(t) = tY2(E)* Velly ® e(dlo,q))) € B(bih @ k)
o CY(t) = lygr + (Ee)"(Ve — s r)Ee




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).

° Kcvd := the generator of the (c, d)-associated semigroup of V

o Ly(t) =t 2(E)* Vel ® le(dio ) € B(hi b © k)
o CY(t) = hhar +(E)* (Ve — lhor)Er = (E)* ViEy




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).

° Kcvd := the generator of the (c, d)-associated semigroup of V

o Ly(t):=t72(E)"Ve(ly @ |e(dio,r))) € B(hih ® k)
° Cv(t) = /h®F+(Et)*(Vt - /h®J-')Et = (Et)* VE;: € B(h® k)-




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).

° KCVd := the generator of the (c, d)-associated semigroup of V

o Ly(t):=t72(E)"Ve(ly @ |e(dio,r))) € B(hih ® k)
| ) Cv(t) = /h®_7:+ (Et)*(vt = /h®~7:)Et = (Et)* V:E;: € B(h@ k)

>

Properties. Set DY := Dom K},




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).

° KCVd := the generator of the (c, d)-associated semigroup of V

o Ly(t):=t72(E)"Ve(ly @ |e(dio,r))) € B(hih ® k)
| ) Cv(t) = /h®_7:+ (Et)*(vt = /h®~7:)Et = (Et)* V:E;: € B(h@ k)

>

Properties. Set DY := Dom K},

o (CY(t))e>0 is a family of contractions in B(h ® k).




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).

° KCVd := the generator of the (c, d)-associated semigroup of V

o Ly(t):=t72(E)"Ve(ly @ |e(dio,r))) € B(hih ® k)
| ) Cv(t) = /h®_7:+ (Et)*(vt = /h®~7:)Et = (Et)* V:E;: € B(h@ k)

>

Properties. Set DY := Dom K},

@ (CY(t))e>0 is a family of contractions in B(h ® k).
e DomKY, = DY for all c,d € k.




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).

° KCVd := the generator of the (c, d)-associated semigroup of V

o Ly(t):=t72(E)"Ve(ly @ |e(dio,r))) € B(hih ® k)
| ) Cv(t) = /h®_7:+ (Et)*(vt = /h®~7:)Et = (Et)* V:E;: € B(h@ k)

>

Properties. Set DY := Dom K},

@ (CY(t))e>0 is a family of contractions in B(h ® k).
e DomKY, = DY for all c,d € k.

o Forallve DY, LYv :=lim;_ o+ LY(t)v exists and
(K Lg) € X(b, k):




Associated operators and domains

Isometric embeddings: h @k - h@k® L’(Ry) C h® F

Er: & 712601, (t>0).

Associated operators and domains. Let V € QS.C(h, k).

° KCVd := the generator of the (c, d)-associated semigroup of V

o Ly(t):=t72(E)"Ve(ly @ |e(dio,r))) € B(hih ® k)
| ) Cv(t) = /h®_7:+ (Et)*(vt = /h®~7:)Et = (Et)* V:E;: € B(h@ k)

>

Properties. Set DY := Dom K},

@ (CY(t))e>0 is a family of contractions in B(h ® k).
e DomKY, = DY for all c,d € k.

o Forallve DY, LYv :=lim;_ o+ LY(t)v exists and
(K Lg) € X(b, k):

HLt\f/VH2 + 2 Re(v, Kc\,/dv> S 0.
T
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Remark
If V € QS.C(h,k) satisfies the QSDE

dVi = VedNAE(t) = Vi(Kdt + LdA; + MdA: + (C — 1)dN;)
for an operator F = [’Z C’\f,} (with dense domain of the form
D @ (D®D)), then V is nonsingular and CV = C.

A\

Associated quadruple

Let V € QS.C(h,k) be nonsingular. Then Vis nonsingular and,
with KV := K, LY := LY and LV := LY, we have

an associated quadruple BV := (K, LV LV, CY — ).
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Markov-regular QS coycles

Definition

V € QS.C(h,k) is Markov-regular if its expectation semigroup is
norm-continuous. Write QScChi.reg(h, k) for this class.

A\

Theorem. Let F € B(h & (h @ k)).

Then the QSDE dV; = V:dAg(t), Vo = I has a unique (strong)
solution. Notation: vF.

A\

Bounded QS generators
Co(h, k) :=={F € B(h @ (h ®k)) : r(F) <0},
r(f):=F*+F+ FAF <0<0iffg(F):=F+ F*+ FAF* <0.

Theorem

The map F — VF restricts to a bijection
CO([), k) = QSCCM.reg(ha k)
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Definition

The induced QS cocycle on B(h) and its associated semigroups are
defined respectively by

(ktv x— V(x® /f)V*) 50

(057 x — Eo[(VE) (x ® 1) V{] )

RENEIS

=

IV

o
\

kY (lp) = RV ViR and Eo[k)Y(x)] = Eo[ Vi (x ® Ir) V4]

| \

Theorem
Let T be a total subset of k containing 0. Then TFAE:

(i) kv is unital (equivalently V is isometric);

(i) Q%€ is conservative for all c € T.
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Theorem (Ouhabaz)

On by, there is a trijective correspondence between

(i) semisectorial, maximal accretive operators —G;
(ii) closed, densely defined, semisectorial, accretive quadratic
forms (q, Q);
(iii) holomorphic contraction semigroups P;

such that P is the semigroup generated by G, (q, Q) is the
form-generator of P, and —G s the closed operator associated

with (q, Q):
Pev = lim (I = n7'tG)™"v (v € h),

0 ={ven:suptRe(v. (I - P)v) < 0}

>0
= lim t Xv,(I =P
glvl = lim t={v, (I = Pr)v)
Dom G = {v € Q: JyepVueco (u, V') = —q(u,v)}, Gv=""
I
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Some definitions

For a quadratic form g on b with domain Q,
o (g, Q) is accretive if

Req[v] >0, veQ.

For an accretive quadratic form (g, Q),

@ An inner-product norm on Q is given by

Ivllg := (Reqlv] + [[vI*)*/?;

o (q,Q) is closed if Q is complete in the norm ||-|4;
o (g, Q) is semisectorial if there is C > 0 such that
Imqlv]l < Cllvllg, veQ
Set Xl°l(h, k) equal to
{(K, L) € X2(h,k) : —K is semisectorial and Dom L = Q}

where Q is the domain of the quadratic form associated with K.
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Holomorphic QS contraction cocycles: definition

Definition
We call V € QS.C(h,k) holomorphic if its expectation semigroup

is holomorphic.
Write QS.Cyoi(h, k) for the collection of these.

Thus
@SCCM.reg(h: k) C @SCCHOI(h7 k),

and B
V' is homolorphic if and only if V is.
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Let V € QScCyoi(h,k). Then V is nonsingular.

Therefore V has an associated quadruple

FY = (KY, LV, [V, CY — hew).

Let V € QScCyoi(h, k). Then each of its
(associated semigroups Q%9 is holomorphic, and so each of its)
associated cocycles V<9 is holomorphic.




Structure relations



Structure relations

Set X}°(h, k) equal to the set of quadruples F = (K, LLC— I
such that




Structure relations

Set X}°(h, k) equal to the set of quadruples F = (K, LLC— I
such that

@ —K is a maximal accretive and semisectorial operator on b,




Structure relations

Set X}°(h, k) equal to the set of quadruples F = (K, LLC— I
such that

@ —K is a maximal accretive and semisectorial operator on b,

o L, L are operators from § to h ® k with domain O,




Structure relations

Set X}°(h, k) equal to the set of quadruples F = (K, LLC— I
such that

@ —K is a maximal accretive and semisectorial operator on b,
o L, L are operators from § to h ® k with domain O,
@ C is a contraction in B(h ® k),




Structure relations
Set X}°(h, k) equal to the set of quadruples F = (K, LLC— I

such that
@ —K is a maximal accretive and semisectorial operator on b,

o L, L are operators from § to h ® k with domain O,
@ C is a contraction in B(h ® k),
o [AFC|? < 2Rel[c],




Structure relations

Set X}°(h, k) equal to the set of quadruples F = (K, LLC— I
such that

@ —K is a maximal accretive and semisectorial operator on b,
o L, L are operators from § to h ® k with domain O,

@ C is a contraction in B(h ® k),

o |AF(|? < 2Ref[¢],

where, in terms of the form-generator (7, Q) of the expectation
semigroup of V/,




Structure relations

Set X}°(h, k) equal to the set of quadruples F = (K, LLC— I
such that
@ —K is a maximal accretive and semisectorial operator on b,
o L, L are operators from § to h ® k with domain O,
@ C is a contraction in B(h ® k),
o |AFC|? < 2Rerc],

where, in terms of the form-generator (7, Q) of the expectation
semigroup of V/,

DomTl = Dom AF = Q @ (h ® k),
wa:wﬂ—ﬂauwwbxwuaw—nawmcz(Q,

£
0 0
ar=[7 2]

o'
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Remarks on the structure relations

@ We have the inclusion

HOl(h k) {(K’ L, M*’Cil): [TCAfI] € CO(hak)}

o If (K,L,L,C —1) e xHl(p, k) then (K, L) € XH°l(p, k).

@ |In the converse direction,
if (K, L) € X5°l(h, k) then, for any contraction C € B(h ® k),
we have

(K,L,—C*L,C — 1) € X3°'(b, k).
In particular, (K, L,—L,0), (K, L,0,—1) € X§ (b, k).
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The stochastic generator of a homomorphic QS cocycle

The prescription
V—TFY

defines a bijection

QScCrroi(h, k) — X5l (h, k),

‘extending’ the inverse of our earlier bijection

Co(b, k) - @SCCM.reg(ba k), F— VF.

This justifies the following definition.

Definition

For V € QScCyoi(h, k),
we refer to FV as the stochastic generator of V.
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Holomorphic QS cocycles
induce ‘dilations’ of minimal QDS’s

Let V € QSCCHol(h, k). Then

Eo[Vi(x @ Ir)Vs] = T/M(x), x € B(h),t>0. (2)

where (K, L) € X5°l(h, k) is the truncation of the stochastic
generator of V to its first two components
[i.e. FV is of the form (K, L, x,)].

Let (K, L) € X}°Y(h, k). Then, letting V = V¥, where
:(K,L, C*L C — 1) for a contraction C € B(h ® k), e
= (K, L,—L,0), (2) holds.
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